Find each value. Round off to 4 decimal places

1. $\sin 218^{\circ} 52^{\prime}=$
2. $\cot 52^{\circ} 18^{\prime}=$
3. $\csc \left(3^{r}\right)=$

Find each angle θ, in standard position, correct to the nearest minute where $0^{\circ} \leq \theta \leq 90^{\circ}$.
4. $\tan \theta=2.2317$
5. $\sec \theta=3.0174$

Find each angle θ, in standard position, correct to the nearest minute where $0^{\circ} \leq \theta \leq 360^{\circ}$.
6. $\cos \theta=-0.1833$ 7. $\cot \theta=0.5337$

In problems 8 and 9 , solve each triangle. Round angles to the nearest minute and sides to the nearest tenth.
8.

9.

In problems 10-11,s denotes the length of the arc of a circle of radius r subtended by the central angle θ. Find the missing quantity. Round answers to three decimal places.
10. $r=22$ feet, $\theta=\frac{1}{3}$ radians, $s=$?
11. $r=56 \mathrm{~cm}, \theta=37^{\circ}, s=$?

In problems 12-13, A denotes the area of the sector of a circle of radius r formed by the central angle θ. Find the missing quantity. Round answers to three decimal places.
12. $r=29$ feet $, \theta=160^{\circ}, A=$?
13. $r=8$ feet,$\theta=4$ radians, $A=$?
14. Find the length of the arc subtended by a central angle of 135° on a circle of radius 4 meters. What is the area of the sector?
15. A neighborhood carnival has a merry-go-round whose radius is 25 feet. If the time for one revolution is 30 seconds, how fast is the merry-go-round going in miles per hour?

